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Abstract— In this research work, Euler Bernoulli beam with 
two degree of freedom per node is used to model a cantilever 
beam and the governing equations are assembled in the state 
space form. Rayleigh damping is assumed for computing the 
impulse response in MATLAB. Transient analysis is performed 
in ANSYS with newmark beta time integration scheme to obtain 
the impulse response of Timoshenko beam and are compared 
with the MATLAB results. The time data from the numerical 
experiment is transferred to ME’scope modal analysis software 
and curve fitted in the frequency domain to obtain the FRF of the 
data. The global curve fitting of the data is done to obtain the 
frequency, damping and mode shapes.  

Keywords—state space; newmark beta; Timoshenko beam; 
MEScope; curve fitting  

I. INTRODUCTION 

In the past two decades, modal analysis has become a 
major technology in the quest for determining, improving and 
optimizing dynamic characteristics of engineering structures. 
Not only has it been recognized in mechanical and 
aeronautical engineering, but modal analysis has also 
discovered profound applications for civil and building 
structures, biomechanical problems, space structures, 
acoustical instruments, transportation and nuclear plants. 
Modal analysis is the process of determining the inherent 
dynamic characteristics of a system in forms of natural 
frequencies, damping factors and mode shapes, and using 
them to formulate a mathematical model for its dynamic 
behavior. The formulated mathematical model is referred to as 
the modal model of the system and the information for the 
characteristics are known as its modal data. The natural modes 
of vibration are inherent to a dynamic system and are 
determined completely by its physical properties (mass, 
stiffness, damping) and their spatial distributions. Each mode 
is described in terms of its modal parameters: natural 
frequency, the modal damping factor and characteristic 
displacement pattern, namely mode shape. The mode shape 
may be real or complex. Each corresponds to a natural 
frequency. The degree of participation of each natural mode in 
the overall vibration is determined both by properties of the 
excitation source(s) and by the mode shapes of the system [7]. 

Modal analysis embraces both theoretical and 
experimental techniques. The theoretical modal analysis 
anchors on a physical model of a dynamic system comprising 
its mass, stiffness and damping properties. These properties 
may be given in forms of partial differential equations. An 
example is the wave equation of a uniform vibratory string 
established from its mass distribution and elasticity properties. 
The solution of the equation provides the natural frequencies 
and mode shapes of the string and its forced vibration 
responses. However, a more realistic physical model will 
usually comprise the mass, stiffness and damping properties in 
terms of their spatial distributions, namely the mass, stiffness 
and damping matrices. These matrices are incorporated into a 
set of normal differential equations of motion. The 
superposition principle of a linear dynamic system enables us 
to transform these equations into a typical eigenvalue problem. 
Its solution provides the modal data of the system. Modern 
finite element analysis empowers the discretization of almost 
any linear dynamic structure and hence has greatly enhanced 
the capacity and scope of theoretical modal analysis. On the 
other hand, the rapid development over the last two decades of 
data acquisition and processing capabilities has given rise to 
major advances in the experimental realm of the analysis, 
which has become known as modal testing 

II. THEORETICAL BACKGROUND

A. Eigen Values and Eigen Vectors [Ilker Tanyer,2008]
Equation of motion in matrix form 

0M x K xKK (1) 

Multiply the above equation using 1M

1 1 0M M x K M x (2) 

0I x C x (3) 
Where 

(4) 
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1M M I

(5) 
1K M C

If there are n degrees of freedom, there will be n values of 

eigen values) 

(6) 
2 0I A C A

(7) 
2 I A C A

(8) 
0I C A

(9) 
0I C

This equation gives the values of natural frequencies, once the 

value of natural frequencies is known mode shape or eigen 

vector can be found out from equation 

(10) 
0I C A

Where A is the mode shape vector.

B.  State Space Representation 
 In order to understand the polyreference frequency 

domain method, state-space concept and its applications to 
vibrational systems must be known. To solve time domain 
problems using a computer, it is desirable to change the form 
of the equations for an n dof system with n second order 
differential equations to 2n first order differential equations. 
The first order form of equations of motion is known as state 
space form. State space representation is a mathematical 
description of a physical model. General equations of this 
representation are, 

Where, 

(11) 
1

.

.

n

y

y

y

is the output vector which includes outputs of the system, it 
can be the measurements in an experiment 

(12) 

1

.

.

n

u

u

u

is the input vector, which contains the inputs that are applied 
to the system. In this representation A is called state matrix, B 
is called input matrix, C is called output matrix and D is called 
feed forward matrix. By using Laplace transform, one can 
describe the whole system with a rational transfer function. 
Derivation of the transfer function begins with taking the 
Laplace transform of the state equation, 

(13) 
x Ax Bux Ax BAxAx

(14) 
(s) (s) BU(s)sX AX

(15) 
(s) (s) BU(s)sX AX

(16) 
sI A (s) BU(s)X

(17) 
1(s) sI A BU(s)X

Another relation between the input and the output can be 
written as, 

(18) 
y Cx Du

(19) 
Y(s) (s) (s)CX DU

(20) 
1Y(s) sI A BU(s) (s)C DU

(21) 
1Y(s) sI A B U(s)C D

(22) 
1Y(s)(s) sI A B

(s)
H C D

U

By choosing the system states as the displacement and 
velocity of each cart, 

(23) 
1

1

2

2

x
x

x
x
x

1xx

2x

(24) 
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1

2

u
u

u

becomes the input vector. Now a state-space representation 
can be defined by using differential equations of a 3-DOF 
system. 

1) State Space Formulation
The matrix equations of motion will be 

(25) 
1 1 1 1 1 1 1 1 1

2 2 1 1 2 2 2 1 1 2 2 2 2

3 3 2 2 3 2 2 3 3

0 0 0 0
0 0
0 0 0 0

m z c c z k k z F
m z c c c c z k k k k z F

m z c c z k k z F

1 1 1c c k k1 11 110c z kc z k0z1 zz1zzz1z1 1z111 11

1 1 2 2 1 1z k k1 1 2 21 1 2 1 1c c c c z k kc c c c z k1 1 2 21 1 2 1 12z2z 22zz2zz22 22

2 20 0c c2 2 k0c c33zz 33zzzz

Expanding the matrix 

(26) 
1 1 1 1 1 2 1 1 1 2 1m z c z c z k z k z F1 1 1 1 2 1 1z k z1 1 1 1 2 1 11 1 1 1 2 1c z c z k zk z1 1 1 2 1 11 1

(27) 
2 2 1 1 1 2 2 2 3 1 1 1 2 2 2 3 2m z c z c c z c z k z k k z k z F2 1 1 1 2 2 2 3 1 1z k2 1 1 1 2 2 2 3 1 12 1 1 1 2 2 2 3 1c z z c z k zz k z1 1 1 2 2 2 3 1 11 1 1 2 2 2 3 11 2 2 2 3 1 1

(28) 
3 3 2 2 2 3 2 2 2 3 3m z c z c z k z k z F3 2 2 2 3 2 2z k3 2 2 2 3 2 23 2 2 2 3 2c z c z k zk z2 2 2 3 2 22 2 2

 The three equations above are second order differential 
equations which require knowledge of the initial states of 
position and velocity for all three degrees of freedom in order 
to solve for the transient response. 

 In the state space formulation, the three second order 
differential equations are converted to six first order 
differential equations.  Following typical state space notation, 
we will refer to the states as “x” and the output as “y.” Start by 
solving for the three equations for the highest derivatives, in 
this case the three second derivatives 

(29) 
1 1 1 1 2 1 1 1 2

1
1

F c z c z k z k z
z

m
1 1 2 1 1z c z k z k1 1 2 1 11 1 2 1 1z c z k zc z k z1 1 2 1 11 1 2 11 2 1 11

1

F1z

(30) 
2 1 1 1 2 2 2 3 1 1 1 2 2 2 3

2
2

F c z c c z c z k z k k z k z
z

m
1 1 2 2 2 3 1 11 1 2 2 2 3 1 11 1 2 2 2 3 1kz c c z c z k zc c z c z k z1 1 2 2 2 3 1 11 1 2 2 2 3 12 32

2

F2z

(31) 
3 2 2 2 3 2 2 2 3

3
3

F c z c z k z k z
z

m
2 2 3 2 2z c z k z k2 2 3 2 22 2 2z c z k zc z k2 2 3 2 22 2 23

3
F3z

We now change notation, using “x” to define the six states; 
three positions and three velocities: 

Position of Mass 1, Velocity of Mass 1 

Position of Mass 2, Velocity of Mass 2 

Position of Mass 3, Velocity of Mass 3 

By using this notation, we observe the relationship between 

the state and its first derivatives: 

Also between the first and second derivatives: 

1 2z x1z x1 2x2 , 2 4z x2z xz2 4x4 , 3 6z x3z x3 6x6

Rewriting the three equations for 1z1z , 2z2z , 3z3z  in terms of the six

states x1 through x6 and adding the three equations defining the 

position and velocity relationships: 

(32) 
1 2

1 1 2 1 4 1 1 1 3
2

1

3 4

2 1 2 1 2 4 2 6 1 1 1 2 3 2 5
4

2

5 6

3 2 4 2 6 2 3 2 5
6

3

x x
F c x c x k x k x

x
m

x x
F c x c c x c x k x k k x k x

x
m

x x
F c x c x k x k x

x
m

1 2x x1

1
2

F1x

3 4x x3

2
4

F2x
c

5 6x x5

3
6

F c3x
c

Rewriting the equation in matrix form as 

(33) 

1 1

3 3
1 1 1 1 1

5 5
1 1 1 1

2 2
1 2 1 21 2 1 2

4 4
2 2 2 2 2 2

6 6
2 2 2 2

2 3 3 3

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0

0 0

x x
x x

k k c c F
x x

m m m m
x x

k k c ck k c cx x
m m m m m m

x x
k k c c
m m m m

00
1x1 011 000
3x3x

k
0

1k1x5 m55x5x5

kk
m1m1m1

2x2 k

m

1k1x 111
4x4x4

k

2m22
66x6

mmm

1

2

2

3

3

m
F
m
F
m

2) Statespace Code in Matlab

%sdof is the total system degrees of freedom 

%function to compute State space matrices from 

% mass (mm), stiffness (kk), damping(cc) and force (ff) 

function [A,B]=statespace(mm,kk,cc,ff,sdof) 

A=[zeros(sdof,sdof),eye(sdof,sdof);-mm\kk,-mm\cc]; 

B=[zeros(sdof,1);mm\ff]; 

end

C.  Newmark-Beta Method 
The Newmark-beta method [Newmark, N. M., 1959] is a 

method of numerical integration used to solve differential 
equations. It is widely used in numerical evaluation of the 
dynamic response of structures and solids such as in finite 
element analysis to model dynamic systems. The method is 
named after Nathan M. Newmark, former Professor of Civil 
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Engineering at the University of Illinois, who developed it in 
1959 for use in Structural dynamics. 

Using the extended mean value theorem, the Newmark-  
method states that the first time derivative (velocity in the 
equation of motion) can be solved as, 

(34) 

1n nu u tun n1u u tu1n n1 uu
Where,

(35) 

11 n nu u u 1n nu u ununu
Therefore 

(36) 

1 11n n n nu u t u tu 1n n n nu u t u tu1n n111 u t uu t uu
Because acceleration also varies with time, however, 

the extended mean value theorem must also be extended to the 
second time derivative to obtain the correct displacement. 
Thus, 

(37) 
2

1
1
2n n nu u tu t u21
2nu t u2

n
1u

where again 

(38) 
11 2 2n nu u u 1n nu u2nu u2n 0 2 1

Newmark showed that a reasonable value of is  is 0.5, 

therefore the update rules are, 

(39) 

1 1

2 2
1 1

2
1 2

2

n n n n

n n n n n

tu u u u

u u tu t u t u

2n n
tu 1n n111 u

2 2
12n n n

1 2 t u221 2u t ut u2

Setting  to various values between 0 and 1 can give a wide 
range of results. Typically  = 1/4, which yields the constant 
average acceleration method, and for =1/6 the linear 
acceleration method is used.

D. Rayleigh Damping 
Consider the equation of motion for a linear elastic MDOF 

system with linear viscous damping as below 
(40) 

(t) (t) (t) 0Mx Cx Kx(t) (t) (Mx(t) (t)(t) ((t)(t)(t)
In which M, C and K are mass, damping and stiffness 

matrices and x(t) is the displacement vector and x  and x
represent the first and second order derivatives of time at 
different degrees of freedom respectively. The damping of 
structure is assumed to be viscous and frequency dependent 
for the sake of convenience in analysis. The most popular 
method is to solve the equation of motion using the modal 
analysis; in this case damping values are directly assigned to 
the modes. Damping ratios can be calculated using the 

Caughey series [Caughey and O’Kelly, 1965], Rayleigh 
damping is a special case of which. Rayleigh damping known 
as proportional damping or classical damping model expresses 
damping as a linear combination of the mass and stiffness 
matrices, that is, 

(41) 

C aM bK
Where a and b  are real scalars with 1/sec and sec units 

respectively 
To solve the equation of motion the mass, stiffness

and stiffness matrices of Eqn. (40) should be known. Using 
the assumption of the linear viscous damping in structures
focusing on Rayleigh damping (Eqn. (41) the damping matrix 
can be defined as a function of mass and stiffness matrices. 
The damping ratio for the nth mode of such a system is: 

(42) 
1

2 2n n
n

a b

The coefficients a  and b  can be determined from specified 
damping ratios   and   for the ith and jth modes, respectively  

(43) 
1/1
1/2

i i i

j j j

a
b

The procedure is convenient for determining a and b.
Selecting a desired amount of damping and a frequency range 
of 0 to R  covering those modes of interest, R>1,  can be 
computed;

(44) 
1 2
1 2

R R
R R

Where  determines bounds on the damping ratios that are 
imparted to those modes within the specified frequency range. 
The modes in the given frequency range will have a damping 
ratio bounded between  +  and - . a and b can be 
calculated from: 

(45) 
22

1 2
Ra

R R

(46) 
1 22

1 2
b

R R
and can be used to compute an actual damping value for nth 

mode from Eqn. (45) if n  is known. 

1) Variation Of Damping With Different a and b Values

By varying the a and b values the following conclusions are 
obtained. 
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If a = 0, the higher modes will be heavily damped
If b = 0,the the higher modes will have very little
damping
As the value of a increases, the amplitude of first
mode peak decreases

III. MODAL ANALYSIS OF CANTILEVER BEAM
A cantilever beam of l m length with 5 elements is 

considered for the experiment.The mass density of the beam is 
2676 kg/m3 and the elastic modulus is 69 GPa. The width and 
height are .020 m and 0.0015 m respectively.

A.  Transient Analysis in Ansys 

In ANSYS, newmark beta algorithm is used as the solver. 
This solver is accurate but takes a fair amount of time 
compared to the solver in MATLAB (Runge-Kutta). Beam 
188 is selected as element. Beam 188 is suitable for analyzing 
slender to moderately thick beam structures. The element is 
based on Timoshenko beam theory which include shear 
deformation effect. The element provide options for 
unrestrained warping and restrained warping of cross sections. 
Full option is used as the solution method for transient 
analysis in ANSYS. 

The element is a linear, quadratic or cubic 2 node beam 
element in 3D. It has 6 or 7 dof at each nodes. These include 
translations in x, y, z directions and rotations about x, y, z
directions. A seventh dof is optional. The element is well 
suited for linear, large rotation, or large strain nonlinear 
applications. 

1) Transient Analysis Code in Ansys

! Code to create the time response between input at node x and output at node 
y, Hxy(t) 

ALPHAD,0.9 
BETAD,0.00001  
f=1 
dt=0.001 
ts=2 
*do,t,dt,ts,dt 
F,2,FY,f!node at which input is given in y direction (x) 
time,t 
solve 
f=0  !Impulse effect 
*enddo 

2) Result of Transient Analysis in Ansys
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Figure. 1.Transient analysis result in ANSYS 

B. Analysis in Matlab 

The Runge-Kutta algorithm is used in MATLAB. It is several 
times faster than the solver in ANSYS. 

1) Transient Analysis Code in Matlab

% Variable descriptions                                                      % 
ts=0.001; %sampling time decrease for higher frequencies 
C=eye(2*sdof); 
D=zeros(2*sdof,1); 
[A,B]=statespace(mn,kn,cc,ff,sdof); 
sys=ss(A,B,C,D); 
t0=0:ts:5; 
[yy,tt,xx]=impulse(sys,t0); 
plotfft(tt,yy(:,12)); %function defined to get single sided spectrum 

2) Result of Transient Analysis in Matlab
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Figure. 2. Transient analysis result in MATLAB 

C. Analysis in MEScope 
ME’scope software is used to transform the time domain 

signal to frequency domain at a faster rate. It is a sophisticated 
tool which can perform FFT as well as the curve fitting 
techniques. 

1) Fast fourier transform
A fast Fourier transform (FFT) [Peter Avitabile 2001] is an 

algorithm to compute the discrete Fourier transform (DFT) 
and it’s inverse. Fourier analysis converts time (or space) to 

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 
ISSN 2229-5518 751

IJSER © 2015 
http://www.ijser.org

IJSER



frequency and vice versa; an FFT rapidly computes such 
transformations by factorizing the DFT matrix into a product 
of sparse (mostly zero) factors. As a result, fast Fourier 
transforms are widely used for many applications in 
engineering, science, and mathematics. The basic ideas were 
popularized in 1965, but some FFTs had been previously 
known as early as 1805. 

2) Frequency response function
The frequency response function is the ratio of the output 

response of a structure due to an applied force. The applied 
force and the response due to applied force can be measured 
simultaneously. The response can be measured as 
displacement, velocity and acceleration. The measured data 
can be transformed from the time domain to frequency domain 
using FFT algorithms found in any signal processing analyzer 
and computer software packages. 

Figure 3 shows the transformed frequency domain signal 
at node 5.Similarly time domain signal at each node can be 
taken and frequency domain signal can be found out. The FRF 
is computed for each node acting as excitation/response 
source. All these signals can be combined in ME’scope to get 
a frequency domain signal spectrum. This spectrum can be 
curve fitted easily by ME’scope. Figure 4 shows the final 
curve fitted FRF. Global polynomial curvefitter is used as the 
curve fitting technique. 

Figure. 3. FFT using ME’scope 

The modal parameters including frequency, mode shape,
damping ratio etc. can be directly estimated from the 
ME’scope curve fitter.

Figure. 4. Final curvefitted FRF in MEScope 

Figure. 5. Beam model obtained from ME’scope 

Figure. 6. Different modal parameters extracted 

Table 1 Results obtained for numerical experimental modal analysis 
MATLAB ME’scope ANSYS

1.221 1.22 1.23
7.69 7.71 7.88

21.73 21.7 23.025
42.85 42.8 48.268
71.04 71

IV. CONCLUSION

Numerical experiment of a cantilever beam is done to study 
the modal parameters. Instead of performing the modal 
analysis which gives only the eigen values and eigen vectors, 
transient analysis is performed to simulate the impact test of 
structures to elude the time based response at multiple points. 
This data is then transformed to frequency domain and curve 
fitted to obtain the FRF’s. Modal damping, residues (mode 
shapes) as well as natural frequencies are determined using 
ME’Scope software. Transient analysis of a cantilever beam 
with roving impact load at all other points other than the fixity 
of  beam is done using ANSYS and MATLAB. The results are 
found in good agreement, while the state space solution in 
MATLAB was considerably faster than the Newmark Beta 
method in ANSYS, especially for fine mesh size.. The 
theoretical background of the processes are also discussed in 
this paper. 
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